
Implementation of MDC-2 with AES-hash Function

Nway Htet Myat, Myat Su Win

University of Computer Studies, Taung-ngu, Myanmar

nwayko83@gmail.com, myattsuro@gmail.com

Abstract

Cryptographic hash functions are a third type of

cryptographic algorithm. They take a message of any

length as input, and output a short, fixed length hash

which can be used in (for example) a digital

signature. As digital signature technology becomes

more widely understood and utilized, many countries

worldwide are competitively developed their own

signature standards for their use and applications.

Hash functions are the mathematical algorithms that

transform arbitrary length sequences of bits into a

hash result of a fixed, limited length. And they are

used in many cryptographic protocols. Currently,

hash functions based on block cipher used in many of

the cryptographic applications. This paper will

propose a hash function which is based on AES

algorithm and it is the modified version of MDC-2

algorithm to perform efficiently the iteration of

compression function for message with huge length.

Keywords: hash function, AES, DES, MDC-2,

message digest.

1. Introduction

Hash function is a fundamental tool in

Information Security. In its simplest from a hash

function is an algorithm that takes an input of any

size and outputs a fixed length “hash code” that is, in

some sense, difficult to predict in advance. That is,

the output of the hash function serves as a digital

finger-print for the input and should be the same

each time the same message is hashed. Hash

functions are used to help provide data integrity in

Message Authentication Codes (MACs), to produce

message digests for use with digital signature

schemes and to produce Manipulation Detection

Codes (MDCs) in entity authentication and key

establishment schemes.

For a hash function to be secured it is required to

be one-way and collision resistant. The one-way

property can be achieved if it is easy to generate the

message digest of a message but, is hard to

determine the original message when the digest of it

is known. On the other hand, collision resistance can

be attained if it is hard to find two different

messages, having same message digest as output.

Apart from these requirements, the hash function

should be accepting a message of any size as input

and computation of the message digest must be fast

and efficient. Signing the message digest rather than

the message often improves the efficiency of the

process because the message digest is usually much

smaller than the message. [1, 4]

2. Background Theory

In this section, cryptographic hash function

and modification detection code (MDC-2) are

presented as background theory.

2.1 Cryptographic Hash Function

Cryptographic hash functions play a fundamental

role in modern cryptography. Hash functions take a

message as input and produce an output referred to

as a hash-code, hash-result, hash-value, or simply

hash. Cryptographic hash functions are used for data

integrity and message authentication.

The basic idea of cryptographic hash functions is

that a hash-value serves as a compact representative

image (sometimes called an imprint, digital

fingerprint, or message digest) of an input string, and

can be used as if it were uniquely identifiable with

that string.

Hash functions are used for data integrity in

conjunction with digital signature schemes, where

for several reasons a message is typically hashed

first, and then the hash-value, as a representative of

the message, is signed in place of the original

message. A distinct class of hash functions, called

message authentication codes (MACs), allows

message authentication by symmetric techniques.

MAC algorithms may be viewed as hash functions

which take two functionally distinct inputs, a

message and a secret key, and produce a fixed-size

(say n-bit) output, with the design intent that it be

infeasible in practice to produce the same output

without knowledge of the key. MACs can be used to

provide data integrity and symmetric data origin

authentication, as well as identification in

symmetric-key schemes. [1, 7]

Sometimes a MAC is called a keyed hash

function, but then one has to use for an MDC the

artificial term un-keyed or keyless hash function.

According to their properties, the class of MDC‟s

2

will be further divided into one-way hash functions

(OWHF) and collision resistant hash functions

(CRHF). [4, 5]

The hash function will be denoted with h, and its

argument, i.e., the information to be protected with

M . The image of M under the hash function h

will be denoted with h(M) and the secret key with

K .

2.1.1 Types of Hash Function

At the highest level, hash functions may be split

into two classes:

 Unkeyed Hash Functions, whose specification

dictates a single input parameter (a message) and

 Keyed Hash Functions, whose specification

dictates two distinct inputs, a message and a

secret key.

2.1.2 Properties of Hash Function

A cryptographic hash function must be able to

withstand all known types of cryptanalytic attack. As

a minimum, it must have the following properties:

 Preimage resistance - Given a hash h it should

be hard to find any message m such that h = hash

(m). This concept is related to that of one-way

function. Functions that lack this property are

vulnerable to preimage attacks.

 Second preimage resistance - Given an input m1

it should be hard to find another input m2 —

where m1 ≠ m2— such that hash (m1) = hash (m2).

This property is sometimes referred to as weak

collision resistance, and functions that lack this

property are vulnerable to second preimage

attacks. [8]

 Collision resistance - It should be hard to find

two different messages m1 and m2 such that hash

(m1) = hash (m2). Such a pair is called a

cryptographic hash collision, a property which is

sometimes referred to as strong collision

resistance. It requires a hash value at least twice

as long as that required for preimage-resistance,

otherwise collisions may be found by a birthday

attack. [1,2,4]

2.2 Modification Detection Codes (MDC)

A move from general properties and constructions

to specific hash functions is now made, and in this

section the subclass of unkeyed hash functions

known as modification detection codes (MDCs) is

considered. From a structural viewpoint, these may

be categorized based on the nature of the operations

comprising their internal compression functions.

2.2.1 Single-length MDCs

Single-length hash functions based on block

ciphers make use of the following predefined

components:

 a generic n-bit block cipher EK parameterized by

a symmetric key K;

 a function g which maps n-bit inputs to keys K

suitable for E (if keys for E are also of length n,

g might be the identity function); and

 a fixed (usually n-bit) initial value IV , suitable

for use with E.

2.2.2 Double-length MDCs

MDC-2 and MDC-4 are manipulation detection

codes requiring 2 and 4, respectively, block cipher

operations per block of hash input. They employ a

combination of either 2 or 4 iterations of the Matyas-

Meyer-Oseas (single-length) scheme to produce a

double-length hash. When used as originally

specified, using DES as the underlying block cipher,

they produce 128-bit hash-codes. The general

construction, however, can be used with other block

ciphers. [1]

2.3 MDC-2 (DES-based)

MDC-2 makes use of the following pre-specified

components:

 Use DES algorithm as the block cipher EK of bit

length n = 64 parameterized by a 56-bit key K;

 Two functions g and g~ which map 64-bit values

U to suitable 56-bit DES keys as follows. For U =

u1u2 …u64, delete every eighth bit starting with u8,

and set the 2
nd

 and 3
rd

 bits to „10‟ for g, and „01‟

for g~ :

 g (U) = u1 1 0 u4u5u6u7u9u10 … u63

g~ (U) = u1 0 1 u4u5u6u7u9u10 … u63

MDC-2 is illustrated in Figure 1. (E = DES cipher

encryption)

Figure 1. MDC-2 hash function

3

INPUT: string x of bit length r = 64t for t ≥ 2.

OUTPUT: 128-bit hash-code of x.

1. Partition x into 64-bit blocks xi: x = x1x2 … xt.

2. Choose the 64-bit non-secret constants IV, ̃

(the same constants must be used for MDC

verification) from a set of recommended

prescribed values. A default set of prescribed

values is (in hexadecimal):

IV = 0x5252525252525252,

 ̃ = 0x2525252525252525.

3. Let || denote concatenation, and
L

iC ,
R

iC
~

 the

 left and right 32-bit halves of Ci. The output is

 h(x) = Ht || tH
~

 . [1, 3]

Figure 2. MDC-2 hash function algorithm

3. System Implementation

The proposed hash function h is designed as

iterative processes which hash arbitrary length inputs

(any text) by processing successive fixed-size blocks

of the input, as illustrated in Figure 3. A hash input x

of arbitrary finite length is divided into fixed-length

256-bit blocks xi. This preprocessing typically

involves appending extra bits (padding) as necessary

to attain an overall bit length which is a multiple of

the block length 256, and often includes a block or

partial block indicating the bit length of the

unpadded input. Each block xi then serves as input to

an internal fixed-size hash function f (Modified

MDC-2), the compression function of h, which

computes a new intermediate result of bit length n

for some fixed n, as a function of the previous n-bit

intermediate result and the next input block xi.

Letting Hi denote the partial result after stage i, the

general process for an iterated hash function with

input x = x1x2…xt can be modeled as follows:

 H0 = IV; Hi = f(Hi-1,xi), 1≤ i ≤t; h(x) = g(Ht)

Output h(x)=g(Ht)

Iterated processing

formatted

 input x = x1 , x2, .. , xr

original input x

preprocessing

compression

 function f
mi

Hi-1

f

H0 = IV

g

Hi

Ht

append length block

append padding bits

Hash function h

Figure 3. Overview of the proposed system

Hi−1 serves as the n-bit chaining variable between

stage i − 1 and stage i, and H0 is a pre-defined

starting value or initializing value (IV). An optional

output transformation g is used in a final step to map

the n-bit chaining variable to an m-bit result g(Ht); g

is often the identity mapping g(Ht) = Ht.

3. 1 Modified MDC-2 with AES

Modified MDC-2 makes use of the following pre-

specified components:

 Use AES algorithm as the block cipher EK of bit

length n = 128 parameterized by a 128-bit key

K.

 Two functions g and g~ which map 128-bit

values U to suitable 128-bit AES keys as

follows. For U = u1u2…u128 , set the 2
nd

 and 3
rd

bits of each byte to „10‟ for g, and „01‟ for g~

:

 g (U)= u1 1 0 u4u5u6u7u8u9 1 0 u12…u128

g~ (U)= u1 0 1 u4u5u6u7u8u9 1 0 u12…u128

Modified MDC-2 is illustrated in Figure 4. E = AES

cipher encryption

Figure 4. Modified MDC-2 hash function

INPUT: string x of bit length r = 128 t for t ≥ 2.

OUTPUT: 256-bit hash-code of x.

1. Partition x into 256-bit blocks xi: x = x1x2 … xt.

2. Choose the 128-bit non-secret constants IV, ̃

(the same constants must be used for MDC

verification) from a set of recommended

prescribed values. A default set of prescribed

values is (in hexadecimal):

IV = 0x5252525252525252,

 ̃ = 0x2525252525252525.

A

A

B

BC

C

D

D

E Eg g~1iH
1

~
iH

L

i
m R

i
m

i
m

iH ~
iH

t
H

~
t

H

4

3. Let || denote concatenation, and
L

iC ,
R

iC
~

the left

and right 64-bit halves of Ci. The output is h(x) = Ht

||
tH

~
 .

Figure 5. Modified MDC-2 hash function

algorithm

4. Experimental Result

The Figure 6 shows the analysis result of

Modified MDC-2 Hash Algorithm. In this analysis,

the hash value was produced 10,000 times for 10,000

random messages and 10,000 random key. And

compare these 10,000 hash value. The system found

no redundancy. So, the accuracy of this hash

function is 100%.

Figure 6. Analysis result of modified MDC-2 hash

function

Table 1. Numbers of rounds for MDC-2 and

modified MDC-2

Message Length

(number of bits)

Number of rounds
MDC-2

(DES)

Modified MDC-2

(AES)

N N/64 N/256

256 4 1

512 8 2

1024 16 4

2048 32 8

Table 1 shows the possible number of rounds for

MDC-2 hash function and proposed Modified MDC-

2 hash function. The MDC-2 hash function take 64-

bits block at each round of its processes. The

Modified MDC-2 hash function take 256-bits block

of message at one round and it is split as two 128-

bits blocks for internal process of each round. This is

obviously decreasing the number of rounds needed to

process.

Modified MDC-2‟s Rounds = MDC-2‟s Rounds / 4

Input Message: Cryptographic hash functions are a third

type of cryptographic algorithm. They take a message of

any length as input, and output a short, fixed length hash

which can be used in (for example) a digital signature. As

digital signature technology becomes more widely

understood and utilized, many countries world-wide are

competitively developing their own signature standards for

their use and applications. Hash functions are the

mathematical algorithms that transform arbitrary length

sequences of bits into a hash result of a fixed, limited

length.

Size: 4400 bits

Number of Blocks: 18

User Key: This is test for AES key.

AES Key: 546b1cd7383fd6a5a522bcba53803d45

G: 544b5cd7585fd6c5c542dcda53c05d45

G bar: 342b3cb7383fb6a5a522bcba33a03d25

Left Encryption: 119bea5f8df43ebe4dbe98e3968bb906

Right Encryption: dbebce695684dddd6dafc00385b37997

Register AB: 62f3ca39f89a5dca24d1f690b6eacb63

Register CD: 9899b7f922ebbaaf0cdfa86ae69311f6

G: 62f3ca39f89a5dca0cdfa86ae69311f6

G bar: 9899b71922ebbaaf24d1f690b6eacb63

 .

 .

 .

Left Encryption: 21fd8dd0ec5f6101426fd0c02d7a3fa7

Right Encryption: d056f1fb476ebfb84f6582ee537d7d34

Register AB: 21fd8dd0ec5f6101426fd0c02d7a3fa7

Register CD: b538968f2f40bfb84f6582ee537d7d34

G: 21fd8dd0ec5f61014f6582ee5 37d7d34

G bar: b538968f2f40bfb8426fd0c02d7a3fa7

Hash Value: 21fd8dd0ec5f61014f6582ee537d7d34b538

 968f2f40bfb8426fd0c02d7a3fa7

Figure 7. Implementation of modified MDC-2

hash function with huge length message

The Figure 7 is implementation of modified

MDC-2 hash function with huge length message. In

this process, input message is text and then message

length has 4400 bits and 18 blocks. The hash value is

21fd8dd0ec5f61014f6582ee53 7d7d34b538968f2f40

bfb8426fd0c02d7a3fa7. In this process, modified

MDC-2 takes 18 rounds and original MDC-2 takes

69 rounds for this message.

As a result, it can be concluded the larger the

message size, the more decrease in number of rounds

needed to process. Since the time complexity has not

5

considered in this current work, it can be hoped that

the reducing in number of rounds may less the

overall processing time.

5. Conclusion

The only weakness of MDC-2 is its block cipher.

DES finally and definitively proved insecure. This

casts some doubts on the security of MDC-2. This

system shows a modified method for construction of

hash functions based on block ciphers such as AES

which is more secure than all others. And, AES

cipher takes byte by byte (8-bits by 8-bits) in its

process and DES cipher takes bit by bit in its

process. So, the Modified MDC-2 Hash Function,

that is MDC-2 with AES, is an efficient Hash

Function. An effort is made the hash function MDC-

2 algorithm which is modified to perform efficiently

the iteration of compression function for message

with huge length. The proposed system can prove

that there is no redundancy upon testing 10000 times.

Moreover, this hash function was designed to attain

better security than original MDC-2 algorithm.

The system can be extended in several different

ways. The system can be extended by changing the

way of internal processes of the system to make

more secure or faster. And can change the output

length of the hash function in easier manner.

Moreover, the block cipher can be replaced by other

block cipher.

6. References

[1] Alfred J. Menezes, Paul C. Van Oorschot and Scott A.

Vanstone, Handbook of Applied Cryptography, Chapter 9:

“Hash functions and data integrity”. CRC Press, 1997.

[2] Ilya Mironov. “Hash functions: Theory, attacks, and

applications”. Accessed on-

http://research.microsoft.com/users/mironov/papers/hash_s

urvey.pdf. Last accessed on 15th of December 2006.

[3] Lars R. Knudsen , Florian Mendel , Christian

Rechberger , and Søren S. Thomsen, “Cryptanalysis of

MDC-2”.

[4] Murali Krishna Reddy Danda, “Design and Analysis of

Hash Functions”, 2007.

[5] Ralph C. Merkel Xerox PARC, “One Way Hash

Function and DES”.

[6] http://en.wikipedia.org/wiki/cryptography

[7] http://www.garykessler.net/library/crypto.html

[8] http://www.openbsd.org/crypto.html

http://en.wikipedia.org/wiki/cryptography
http://www.garykessler.net/library/crypto.html
http://www.openbsd.org/crypto.html

